Pattern Clustering Using a Swarm Intelligence Approach

نویسندگان

  • Swagatam Das
  • Ajith Abraham
چکیده

Clustering aims at representing large datasets by a fewer number of prototypes or clusters. It brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. Data mining tasks, in these days, require fast and accurate partitioning of huge datasets, which may come with a variety of attributes or features. This, in turn, imposes severe computational requirements on the relevant clustering techniques. A family of bio-inspired algorithms, well-known as Swarm Intelligence (SI) has recently emerged that meets these requirements and has successfully been applied to a number of real world clustering problems. This chapter explores the role of SI in clustering different kinds of datasets. It finally describes a new SI technique for partitioning a linearly non-separable dataset into an optimal number of clusters in the kernelinduced feature space. Computer simulations undertaken in this research have also been provided to demonstrate the effectiveness of the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

Developing information gathering technologies and getting access to a large amount of data, we always require methods for data analyzing and extract useful information from large raw dataset. Thus, data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because of diff...

متن کامل

Computational Intelligence Methods for Clustering of Sense Tagged Nepali Documents

This paper presents a method using hybridization of self organizing map (SOM ), particle swarm optimization(PSO) and k-means clustering algorithm for document clustering. Document representation is an important step for clustering purposes. The common way of represent a text is bag of words approach. This approach is simple but has two drawbacks viz. synonymy and polysemy which arise because of...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010